浙江省科学技术进步奖提名书

(年度)

一、成果基本情况

行业评审组: 林业和养殖		殖组	提名号:		奖励类别: 社会公益				
提名者 张节		张气			提名奖励等级			二等奖	
成果名称 (中文)		竹笋	竹笋食味和安全品质提升关键技术及应用			及应用	□新冠疫情防控科技成果		
主要完成人员		丁兴萃,陈双林,金爱武,柴振林,江志标,白瑞华,郭子武,蔡函江,朱强根							
主要完成单位 (本省第一完成 单位盖章)		国家林业和草原局竹子研究开发中心,中国林业科学研究院亚热带林业研究所,丽水学院,浙江省林产品质量检测站,丽水市农林科学研究院,桐庐县林业技术推广中心							
学 到 八 米	1	森木	木培育			14	己码	090702	
学科分类	2								
	3						:码		
所属国民经济行业 01			01 农、林、牧、渔业						
任务来	源	国家科技计划等							
具体计划、基金的名称和编号(不超过 300 字)									
部 "中国 "Assessm (L-063/2 (2017C02 (2009R500	向巴西捷 ent of 1 2011)、 2016)、 30-02)、	e e e e e e e e e e e e e e e e e e e	竹子培育 - poo shoot I 省科技重 I 省科技包 I 省农业重	与高效和 develop 巨大 "争]新团队 大成果车	利用技术"(ment for for 年用林减肥》 、"竹笋套袋 专化"毛竹林	KY20150 od in A 咸药生/ き培育品 高效生态	2001 fric 产技 品可	16YFD06009031)、科技)、联合国 77 国集团 a and Latin America" 术研究与应用示范" 改良关键技术研究" 持续经营技术示范推广"	
【(2012T201-02)、国家林业科技推广"基于环境与竹笋安全的笋用竹林生态经营技术示范 推广"([2011]02)、中央财政林业科技推广示范"毛竹笋材林非均匀施肥和节水灌溉技术									
集成示范与推广"([2015] TS14)、浙江省省院合作"森林食品产地环境质量安全评价及控制关键技术研究"(2007SY13)等项目。									
论文(篇)			24		专著(本)			0	
授权发明专利(件))	5		其他知识产权(件)			2	
直接经济效益(万元)				间接经济效益	盆(万元)			
科技成果登	科技成果登记号 DJ218002020Y0019								
成果起」	上时间	起始: 2008.1.1 完成: 2019.12.31					12. 31		
是否愿意图]是■否	愿意降:	级评审的等级	(可多	选)	□二等奖□三等奖	

附件二、 浙江省科学技术奖公示信息表(专家提名)

提名奖项:科学技术进步奖

成果名称	竹笋食味和安全品质提升关键技术及应用						
提名等级	二等奖						
	(标准规		产权(标准)具体名称	授权号 (标准规范 编号)	权	利人(标准规范起 草单位)	
	行业标准	黄毛笋在地保 鲜技术		LY/T 1833		家林业和草原局竹 研究开发中心	
	行业标准	早竹技术	丰产栽培 规程	LY/T 1834		家林业和草原局竹 研究开发中心	
	发明专利		改善竹笋 的培育方	ZL201010557 418. 4		家林业和草原局竹研究开发中心	
	发明专利		改善竹笋林的钩梢	ZL201510160 214. X		家林业和草原局竹 研究开发中心	
	发明专利	一种竹笋苦涩 味测定方法 一种提高高节 竹笋品质的培 育方法		ZL201510163 053. X		家林业和草原局竹 研究开发中心	
提名书 相关内容	发明专利			ZL201410385 874. 3	中/学	庐县林业技术推广 心站、中国林业科 研究院亚热带林业 究所	
			酸 青霉1 及其分化方法与	ZL201310497 471. 3	中国林业科学研究院 亚热带林业研究所		
	作者		论文(专著)名称/刊物		勿	年卷 页码	
	郭子武,陈双林,萧江华		笋用小径竹林土壤有机农药 污染研究,环境化学			2008, 27(1):87-90	
	郭子武,陈双林, 张刚华,杨清平, 萧江华		浙江省商品竹林土壤有机农 药污染评价,生态学杂志			2008, 27 (3): 434-438	
	郭子武,陈双林, 杨清平,顾李俭, 萧江华		散生型笋用竹笋中有机农药 残留,生态学杂志		2008, 27(9):1587-159 1		

赵倩,陈双林,叶雪均,郭子武	竹林土壤中甲基对硫磷降解 菌的降解效果及其与土壤物 理特性的关系,环境工程学 报	2009, 3(7):1325-1328
柴振林,吕爱华, 尚素微,蒋步云, 祝新明	浙江省食用笋产地土壤主要 污染物含量及质量安全评 价,林业科技开发	2010, 24(6):82-85
白瑞华,丁兴萃, 杜旭华,陈岩,顾 李俭	套袋栽培对高节竹笋品质的 影响,浙江林业科技	2011, 31(1):64-67
白瑞华,丁兴萃, 王树东	竹笋生长期营养及安全品质 的分析,食品科学	2011, 32(5):281-283
杨柳,丁立忠, 柴振林,朱杰丽, 尚素微,吕爱华, 祝新明,蒋步云	4 种植物对毛竹笋林地重金属污染土壤的修复作用研究,西北林学院学报	2011, 26 (6):14-17
李雪蕾,丁兴萃, 张闪闪,章志远, 蔡函江,郑友苗	不同光强下麻竹笋不同部位 苦涩味物质含量的变化,南 京林业大学学报(自然科学 版)	2014, 38 (5):161-166
李明良,陈双林,郭子武,江志标, 钟丹苗	覆土栽培对高节竹笋呈味氨 基酸的影响,浙江林业科技	2015, 35(2):54-57
郭子武,江志标, 陈双林,许波,叶 生月,李明良	高节竹与毛竹鞭笋品质和适 口性比较,林业科学研究	2015, 28 (3): 447–450
郭子武,江志标, 陈双林,叶生月, 李迎春,杨清平, 李明良	覆上栽培对高节竹笋品质的 影响,广西植物	2015, 35(4):515-519
张四海,朱强根, 唐世刚,邱永华, 王意锟,金爱武, 丁枫华,张国	竹林坡位对土壤及竹笋中微 量元素的影响,核农学报	2015, 29 (4): 769–776
Guo Ziwu,Li Yingchun,Yang Qingping, and Chen Shuanglin	Concentrations, sources and pollution characteristic of organic pesticide in soil from typical Chinese Bamboo forest. Environmental Progress & Sustainable Energy	2016, 35(3):729-736

	T		Τ		
	叶莉莎,陈双林	硝态氮和铵态氮供应比例对 雷竹碳、氮、磷化学计量的 影响, 植物营养与肥料学报	2016, 22 (6) : 1672–167 8		
	叶莉莎,陈双林	氮素形态及配比对雷竹光合 特性和氮代谢酶活性的影响,生态学杂志	2016, 35 (9): 2355–236 0		
	章志远,丁兴萃, 崔逢欣,蔡函江	避光对麻竹笋苦涩味及单宁 含量、形态与分布的影响, 林业科学研究	2016 , 29 (5): 770-777		
	邱永华,金爱武, 张四海,朱强根	不同施肥方式对竹笋品质的 影响,竹子学报	2017, 36(1):41-48		
	叶莉莎,陈双林	雷竹对不同形态氮素养分的 生理响应,浙江农林大学学 报	2017, 34(1):14-19		
	章志远,丁兴萃, 崔逢欣,白瑞华, 蔡函江	感官评定方法确定麻竹笋苦 涩味物质成分及与口感的关 系,食品科学	2017, 38 (5): 167 -173		
	崔逢欣,丁兴萃, 李露双,章志远, 蔡函江	毛竹笋呈味物质种类、含量和辛辣味强度的关系,林业科学研究	2017, 30 (6): 1041-1049		
	江志标,陈双林, 郭子武,杨清平, 朱玲,李明良	覆土控鞭高品质竹笋栽培对 高节竹叶片形态和养分化学 计量特征的影响,浙江农林 大学学报	2017, 34(6):1155-116 0		
	董文慧,孙春娃, 丁兴萃,李露双, 章志远	电子鼻结合顶空 SPME-GC-MS 分析毛竹冬笋的挥发性成 分,江苏农业学报	2018, 34(3):685-691		
	丁兴萃,章志远,	麻竹笋转录组测序及苦涩味物质合成基因差异表达分析,林业科学研究	2018 , 31 (4):38-46		
	陈双林,排名2, 金爱武,排名3,	研究员,国家林业和草原局的研究员,中国林业科学研究院到研究员,丽水学院/丽水市农村研究员,浙江省林产品质量检	E热带林业研究所; 体科学研究院;		
主要完成人	江志标,排名5,教授级高级工程师,桐庐县林业技术推广中心; 白瑞华,排名6,副研究员,国家林业和草原局竹子研究开发中心; 郭子武,排名7,副研究员,中国林业科学研究院亚热带林业研究 所;				
		工程师, 国家林业和草原局价 副教授, 丽水学院。	子研究开发中心;		

1. 单位名称: 国家林业和草原局竹子研究开发中心 2. 单位名称: 中国林业科学研究院亚热带林业研究所 3. 单位名称: 丽水学院 主要完成单位 4. 单位名称: 浙江省林产品质量检测站 5. 单位名称: 丽水市农林科学研究院 6. 单位名称: 桐庐县林业技术推广中心 张守攻、中国林业科学研究院、研究员/工程院院士、森林培育。 提名专家 竹笋是"素食第一品",浙江省是竹笋产业大省。本成果顺应 "高产量"向"高质量"发展的要求,针对竹笋清香、苦涩、辛辣 等呈味物质和对其食味品质影响不清科学问题和竹笋安全潜在风 险问题, 开展基础研究和技术创新, 在竹笋食味品质、安全品质形 成基础和竹笋品质提升关键技术等方面取得突破:首次系统阐明了 竹笋呈味物质与呈味机制,提出了一种竹笋辛辣苦涩味品质评价方 提名意见 法,揭示了竹笋呈味物质对光照和土壤营养等环境因子响应机制, 摸清了浙江省竹林土壤、竹笋有机农药和重金属污染特征,构建了 竹笋食味和安全品质提升关键技术体系。该成果社会、经济、生态 效益显著,对促进竹笋产业高质量绿色发展具有里程碑意义。 我完全同意以曹福亮院士为主任委员的专家委员会对该成果 的评价:该成果总体达到同类研究国际先进水平,且创新性显著。 特此推荐提名该成果为浙江省省科学技术进步奖二等奖。